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Coefficient bounds for g-convex functions
related to g-Bernoulli numbers

Daniel Breaz', Halit Orhan?, Hava Arikan®, Luminita-Ioana
Cotirla*

Abstract

The main objective of this paper is to present and investigate a
subclass C(b, q) of g-convex functions in the unit disk that is defined by
the g-Bernoulli numbers. For this subclass, we find the upper bounds
on the Fekete-Szeg functional, the coefficient bounds, and the second
Hankel determinant.

1 Introduction and definitions

Let A denote the family of functions [ analytic in the open unit disk U =
{z € C: |z| < 1} of the form

1(2) :z+Zanz". (1.1)

Denote by 8 the subclass of A containing all univalent functions in U.
The class of starlike functions in U will be denoted by 8*, which consists
of normalized functions [ € § that satisfy the following conditions:

§*=<1e8§: R 2(z) >0, zelUyp.
fes () o =ef
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The class of convex functions in U will be denoted by €, which consists of
normalized functions [ € § that satisfy the following conditions:

1
e=fies:n(1+223) S g zeull
I'(z)
Let [ and g be analytic functions in U. We define that the function [ is
subordinate to g in U and denoted by

() <g(2) (z€W),

if there exists a Schwarz function w, analytic in U with w(0) = 0 and
|w(z)] < 1 such that I(z) = g (w(z)) in the unit disk U.
If the value of g in U is a univalent function, then

l(z) < g(z) <= 1(0) = g(0) and I(U) C g(U).

Let P be the class of analytic functions p in U with p(0) = 1 and R (p(2)) >
0 such that p € P if and only if p(z) < (1 +2) /(1 — 2).

The following lemmas will be necessary in order to establish our main
results.

Lemma 1.1. [20] Let p € P with p(z) = 1+ 12+ c222 + -+, then
lenl <2 (neN=1,2,...) (1.2)
and the inequality is sharp.
Lemma 1.2. [8] Let p € P with p(z) =1+ c12 + c222 + -+, then
2y =3 +a(4—c2) (1.3)
and
des =3 4+24— A)err —er(4— A +2(4 — &) (1 — |x|2) z, (1.4)

for some x, z with |x| <1 and |z| < 1.

Hankel Determinants are an important tool in the theory of univalent func-
tions. They can be used, for instance, to demonstrate the rationality of a
function of bounded characteristic in U, or a function that is the ratio of
two bounded analytic functions with integral coefficients in its Laurent series
around the origin [4]. The Hankel determinants [18] H;(n) (n=1,2,..., j =
1,2,...) of the function ! are defined by

(7% Ap+1 .- An+j—1
An+1 an+2 - An+j

Up+tj—1 OGpitj - Gpp25-2
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Fekete-Szeg functional is the name given to the functional Hy(1) = a3 —
a3, and the second Hankel determinant is the name given to the functional
H2(2) = a2a4 — a%.

Definition 1.1. Let g € (0,1). The g-derivative (or q-difference) operator,
introduced by Jackson [10], [11], is defined as

l(z)*l(qz)7 if 27&0
qu(z){ (;'ZS))Z e (1.5)

We note that
limD,l(z) = 1'(2)

qg—1

if [ is differentiable at z. From (1.5), we decude that for function [ € A

Dyl(z) =1+ Z [n], anz" 1, (1.6)
n=2
where [n]  is given by
1— qn
o, ==L (0], =0 (17)
and the g-factorial is given by
1, n=20
| — n
[n]q. = i [k]q7 neN (1.8)
k=1

As ¢ — 1—, we obtain [n], — n. If we choose the function h(z) = 2", while
q — 1—, we can thus have

Dyh(z) = Dyz" = [n], 2" ' = I'(2),

q

where the ordinary derivative is denoted by h'.

Definition 1.2. ([1]) A function | € § is said to be in the C, such that

Gq:{IGS:%<W)>O;qe(O,1),zeu}. (1.9)

It is clear that lim C, = C.

q—1—
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q-Bernoulli numbers and g-Bernoulli polynomials possess many interest-
ing properties and arise in many areas of physics and mathematics. In 1948,
Carlitz [5] introduced the ¢g-Bernoulli numbers and polynomials. Many math-
ematicians have studied g-Bernoulli numbers and ¢g-Bernoulli polynomials (see
(3], [7], [12], [13], [17], [21]). Srivastava [24] give several remarkably shorter
proofs of each of the Euler polynomials and classical Bernoulli were expressed
as finite sums involving the Hurwitz zeta function. The ¢-Bernoulli numbers
and polynomials and, in a modified notation the g-Stirling numbers of the sec-
ond kind introduced there are studied by Choi et al. [6]. Srivastava ([25]) give
a brief expository and historial account of the various basic (or ¢-) extensions
of the classical Bernoulli numbers and polynomials.

According to Jackson’s g-exponential functions, the generating function for
g-Bernoulli polynomials is defined as follows [17]:

F.(z) =

= ZBg(x)ﬁ (1.10)

Jackson’s g-exponential functions are found here [12]

o)=Yt B =Y at L.1)
n=0 q n=0 q

The following formula can be used to relate two g-exponential functions
o) Ey(—a) = 1.

To obtain the recursion formula, one can simply g-differentiate the gener-
ating function with respect to x

DgBji(x) = [nl, By (x),

where Bl (z) = 1.

The g-Bernoulli numbers are b2 = B2(0) for n > 0.

As per the definition given above, the generating function of g-Bernoulli
numbers is given by

Fy(z) = — = Zbgw. (1.12)
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Obviously, b¢ is for some values of n as following:

b o= 1,
1
9 _ __
o= -
1 1 q+¢
o= (- = —q)=—2479
2 4(” 3] q) i(1+q+4)
bl = 0 (1.13)

Here, we present a new subclass of g-convex functions in U that belong to
the class C; and are associated with g-Bernoulli numbers.

Definition 1.3. A functionl € § is regarded to be in the function class C(b, q)
if it meets the conditions given below:
D, (:D,i(2)) :
— i < Fo(z) =
Dyl(z) Eq (5) (eq(3) — eq(=3))

(zel)  (1.14)

forq € (0,1).

First used by Srivastava [23] in Geometric Function Theory, the basic (or
g-) hypergeometric functions were also introduced by [9] g-extension of the
class of starlike functions via the g-derivative operator D,. The g-calculus
was really used with a solid basis for the application of Geometric Function
Theory. Afterwards, numerous mathematicians have produced a substantial
amount of work, which has been fundamental to the advancement of geometric
function theory. Coefficient bounds of classes of g-starlike and g-convex func-
tions were obtained by Aldweby and Darus [2]. Coefficent estimates of the
subclasses of ¢-starlike and g-convex functions of complex order were studied
by Seoudy and Aouf [22]. The coefficient inequality for g-starlike functions
was obtained by Uar [32]. The coefficient inequality for g-convex and g-close-
to-convex functions was obtained by Ahuja et al. [1]. Polatoglu [19] exam-
ined generalized ¢-starlike functions growth and distortion theorems. Some
new subfamilies of starlike functions were systematically defined and studied
by Wongsaijai and Sukantamala [33]. Successfully expanding on the work of
Wongsaijai and Sukantamala [33], Srivastava et al. [26, 27] introduced the
generalized subfamilies of g-starlike functions related with the Janowski func-
tions. The class of g-starlike functions in the conic region was investigated
by Mahmood et al. [15]. Researchers Mahmood et al. [14] and Srivastava et
al. [28] examined the class of g-starlike functions connected to Janowski func-
tions. Fekete-Szeg inequalities for g-starlike and g-convex functions involving
g-analogue of Ruscheweyh-type differential operator was obtained by Soni et
al. [31]. The coefficient inequality for g-starlike functions was obtained by
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aglar et al. [7]. Mahmood et al. [16]. investigated the upper bound of the
third Hankel determinant for the class of g-starlike functions. The Hankel and
Toeplitz determinants of a subclass of g-starlike functions were recently stud-
ied by Srivastava et al. [29], and the upper bound for a subclass of g-starlike
functions related to the g-exponential function was studied by Srivastava et
al. [30]. In present paper, using the principles of subordination, the estimates
for the coefficients |as|, |as|, |as — a3| and |azas — a| of the functions of the
form (1.1) in the class C(b, ¢) have been obtained.

2 Main Results

First, we solve the coefficient inequalities for the class C(b, q).

Theorem 2.1. Let I(z) given by (1.1) be in the class C(b,q). Then, for q €

(0,1),
1
< 2.1
ool < 52 1)
and )
1 4
las| < PR e B (2.2)

T2q+ D) (@+q+1)  4Ag+1)(@+q+1)?

Proof. Since | € C(b, q), there exists an analytic function w with w(0) = 0 and
|w(z)] < 1in U such that

Dy (2D4l(2))

bt <P eu). (2.3)

Define the functions p by

1
p(Z)Zi:Eg:lﬂchzsz (ze W) (2.4)
or equivalently,
-1
w(z) = p(z)
p(z) +1
c1 1 A\ , 1 A\ 5
= _— —_ _ - - - e 2.
2z+2<02 2)2 +2 c3 c102—|—4 z° + (2.5)

in U. Then p is analytic in U with p(0) = 1 and Rp(z) > 0.
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By using (2.5) together with Fy(w(z)) and (1.13), it is evident that

R = 3 &)

_ 1 1z c2 (2q2+3q—|—2) c?
4 16(¢2+q+1)

2

B 9_(2(]2—&-3(]4—2)6102 (q+1)2c‘;’ B (2.6)

4 8(¢2+q+1) 16(¢2+q+1) '
Since
D, (zD,l

Dy (2Dgl(z)) - _ 1+(q+1)a22+[(q—kl)(q2+q+1)a3—(q+1)2a§}22
Dql(z)

+[(®+P+q+1) (P+ag+1)as—(¢+1)(qg+2) (¢*+q+1)azas
+ g+ 1) e e (2.7)

comparing coefficients in (2.6) and (2.7), we have

C1

_ L 2.8
az 4(q+1)7 ( )
3¢> +4q+3) 3
- PG bl L S (29)
4g+1) (> +qg+1) 16(g+1)(¢>2+q+1)
cs (5¢> + 13¢> + 11g + 4) c1co

as = — + P
AP +a+ D)@ +@+q+1)  16(g+1) (2 +q+1)° (P +¢+qg+1)
B (6¢ +20¢*> 4+ 21g + 9) c} (2.10)
64(¢+1) (@ +q+1)° (P +@+q+1) '

The bounds |az| and |a3| can be obtained by using the triangle inequality and
the well-known result |c,,| < 2 for the class P as follows:

1
ag] < ——,
loz] < 2(q+1)
and
1 3¢ +4q+3
sl < S @ 1 2 2
@+ (@+a+1)  4(g+1)(@>+qg+1)
This completes the proof of the Theorem 2.1. O

In the limiting case ¢ — 1—, Theorem 2.1 readily yields the following
coefficient estimates.
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Corollary 2.2. Let [(z) given by (1.1) be in the class Cp. Then,

las| <

| =

and
2
|a3| S §

These results are sharp.

Our second main finding is Fekete-Szeg inequality, or the following prop-
erties of the class C(b, q).

Theorem 2.3. Let l(z) given by (1.1) be in the class C(b,q). Then, for q €

(07 1)a
1

St D@t D)

Proof. Substituting the values of (2.8) and (2.9) into the Fekete-Szeg inequality
|a3 — a§| for the function C(b, q), we get

|as — a3]

(2.11)

ca (—¢* + ¢* + 4¢% + 5q + 2)c2

'4(61 +1)(¢>+q+1) 16(q +1)%(¢* + g+ 1)?

oy =] =

By applying Lemma 1.2, we find that

x(4 —cf) (¢* +q* — q)c3
8(g+1)(¢*+q+1)  16(q+1)%(¢* +q+ 1)

s a3 =

Suppose now that ¢; = ¢ € [0,2]. Then an application of the triangle
inequality gives

|a3—a2| < (4—c)t (¢* + ¢ —g)c?
T 8(g+ D)(@+q+1)  16(g+1)2(2+ g+ 1)

with ¢t = |z| < 1. Moreover, if we set

(4—c)t (¢* + ¢ — q)c?

YD) S S @ a1 T 6+ P a1

then, we obtain
v, 4 —c?

>0
ot 8(g+1)(q2+q+1) — 7
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which shows that U (c,t) is an increasing function on the closed interval [0, 1]
about ¢t. Therefore, the function ¥,(c,t) takes the maximum value at ¢t = 1,
that is,

4_02 (q4+q3_q)02
U (c,t)} =T, (c,1) = .
o2i WWale D} =Wale ) = ey g+ D) T 6l + D2 T g + 1
We next put
i) (C) _ 4-c (q4+q3_q)c2
1 8(g+1)(¢2+q+1) 16(g+1)2(¢g2+q+1)2
1 (¢* — ¢* — 4¢* — 5q — 2)c?

2(¢+1)(¢? +q+1) 16(q + 1)%(¢* + g+ 1)?

We then easily find that, at ¢ = 0, the function ®,(c) has a maximum
value, which is given by
1
20 +1)(¢* +q+1)

This completes the proof of Theorem 2.3. O

|ag — a3] < ®,(0) =

In the limiting case ¢ — 1—, Theorem 2.3 readily yields the following
corollary.

Corollary 2.4. Let [(z) given by (1.1) be in the class Cy. Then,
1
’ag - a§| < 'h

This result is sharp.

Finally, the second Hankel determinant result for the class C(b,q) is as
follows:
Theorem 2.5. Let I(z) given by (1.1) be in the class C(b,q). Then, for q €
(0, 1),

2
lasas — 2| < 2¢°+3¢+2 '

T A+ 1) g+ )
Proof. From (2.8), (2.9) and (2.10), we have

(2.12)

2 _ C1C3 C%
Jazas — 3] - = 16(g+1)(@>+a+ 1) +q>+q+1) 16(g+1)2(¢2 +q+ 1)
(¢° —4q" — 9¢> — 8¢> — g+ 2) cica
64(¢+1)%(¢*> + g+ 1)*(¢®* + ¢*> + ¢+ 1)
(49" + 10¢° + 15¢° + 16¢" + 24¢® 4 18¢” 4+ 9¢ + 5) i
256(q+ 1)?(¢2+ g+ D*(¢®*+¢>+q+1)

)
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which, upon substituting for ¢, and c3 by using Lemma 1.2, yields

lasas —a2| =
(® = +3¢+2) (4—c})ca 3 (4 — i) cfa?
128(¢ + 1)*(¢? + ¢+ 1)*(* +¢* +q+1)  64(g+1)(¢> +g+1)(¢° +¢*+q+1)
(4— cf)2x2 (4—c?) (1 - \x|2> a1z

- +
64(¢+1)*(* +¢*+q+1) 32+ 1)(@+ag+ 1)@+ +qg+1)
(29" + 1245 + 27¢° + 42¢* + 49¢° + 20¢* + 3¢ + 1) cf

256(q +1)2(¢* + g+ (P +¢* +q+1)

. (2.13)

We let ¢; = ¢ and assume also without restriction that ¢ € [0,2]. Then, by
applying the triangle inequality on (2.13) with |z| =t € [0, 1], we obtain

‘a2a4 — a§| <

(q5 — ¢+ 3¢+ 2) (4 — 02) ct N (4 — 02) c2t?
128(¢ +1)*(¢* +q+1)3(¢* +¢* +q+1)  64(g+1)(¢*+q+1)(¢*+¢*+qg+1)
(4—c2)* 2 4— 2

+ +
64(¢+1)*(*+*+q+1) 2@+ 1(P+q+ (@ +¢*+qg+1)
(2q7 +12¢5 + 27¢° + 42¢* 4 49¢> + 20¢° + 3¢ + 1) ct
256(q +1)%(¢* +q+1)*"(¢* +¢* +q+1)

‘We now assume that

My(c,t) =
(q5 —¢>+3q+ 2) (4 - 02) 2t (4 — 02) 2t?
128(¢+1)%(¢* +q+1)*(¢* +¢*+q+1)  64(g+1)(¢* +q+1)(¢*+¢*+q+1)
(4—c2)* 2 4— 2

+ . + .
64(¢+1)2(*+ > +q+1) 32+ +qg+1)(@BF+¢*+q+1)
(247 4+ 12¢° + 27¢° + 42¢* + 49¢® + 20¢* + 3¢ + 1) ¢*

256(q+ 1)2(? + ¢+ D* P+ > +q+1)

b

which, upon partially differentiating with respect to ¢, yields

oM, (° — ¢’ +3¢+2) (4 - &
ot 128(¢+ 12 +q+ 1B+ +q+1)
(4—02) 2t (4—02)2t

+
20+ 1)(?+q+ 1)@+ +q+1)  32q+1)%2(¢2+¢>+q+1)
> 0,
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which, in turn, implies that M,(c,t) increases on the closed interval [0, 1] about
t. That is, M,(c,t) has a maximum value at ¢t = 1, which is given by

3¢° +6¢% +9¢° +10¢®> +9¢ +4) (4 — ?) 2
o2z M(e D)) = Myle 1) = ( 128(g + 1)2(¢2 + ¢ + 1)*(¢3 + q)2 <+ g+ 1))
n (4 — 62)2 n 4 — ¢?
64(g+1)*® +¢>+q+1) 320+ 1)(>+g+1)(*+¢*+q+1)
(297 + 1245 + 27¢° + 42¢* + 49¢° + 20¢> + 3¢ + 1) ¢*
256(q+1)2(2+q+ D) ¢*+¢*>+q+1) '

Also, upon setting

(3¢° + 645 + 9¢° + 10¢* 4+ 9g + 4) (4 — ¢?) ¢?
128(¢+1)2(2 +q+ 1)3(¢®*+ >+ q+1)
(4—cr)’
64(q+ 1)2(¢®+q*2+q+1)
n 4—c?
2+ (P +a+1)(+¢*+qg+1)
(247 + 1245 + 27¢° + 42¢* + 49¢° + 2042 + 3¢ + 1) ¢*
256(q+ 1)%(¢>+ ¢+ )4 +¢*+q+1)

Nq(c) =

9

we have

(3¢° + 6¢° 4+ 9¢° + 10¢*> + 9 + 4) (4 — *) c

64(q +1)%(¢* + g+ 1)*(¢* +¢* + ¢+ 1)

(3¢° + 6¢° + 9¢® + 10¢* + 9q + 4) ¢*
64+ DA+ g+ 1P+ g+ 1)
(4—62)0 c

C16(g+ 1P+ +a+1) 16(g+ D)@ +a+ 1)@+ +q+1)

(297 + 1245 + 27¢° + 42¢* + 49¢° + 20¢> + 3¢ + 1) 3

64(¢ +1)%(¢* + g+ D)*(¢® +¢* +q+1) '

Ng(o) =

If we set N, (c) = 0, then ¢ = 0 is a root of this equation. After a suitable
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calculation, we can deduce that

(3¢° +64¢° + 9¢° + 10¢° + 9 + 4) (4 — ¢?)

64(q+1)%(* +q+1)*(* +¢*+q+1)

5 (3¢° + 64¢° + 9¢® + 10¢* + 9q + 4) ¢?
C64(g+ 122+ g+ 13 (P + @ g+ 1)
4 — 2 o
TI6(+ 2P+t g+ 1) S+ AP+ g+ 1)
1

C16(g+ 1)@+ a+1)(B+ @ +a+1)

3 (2q7 +12¢% + 27¢° + 42¢* + 49¢°® + 20¢> + 3¢ + 1) 2

64(¢+1)*(¢* + g+ D*(®* +¢*+q+1)

Ny(e) =

<

)

implying that the function N, (c) = 0 can take on its maximum value at ¢ = 0,
which is given by

2¢° 4+ 3¢ +3
8(g+1)*¢* +a+1)(¢* +¢* +q+1)

|asas — a3] < Ng(0) =

This completes the proof of Theorem 2.5. O

In the limiting case ¢ — 1—, Theorem 2.5 readily yields the following
corollary.

Corollary 2.6. Let [(z) given by (1.1) be in the class Cy. Then,
1
|a2a4 — a§| < EYh

This result is sharp.

3 Conclusion

In the open unit disk U, we have introduced a new subclass €(b, q) of g-convex
functions that are subordinate to the ¢g-Bernoulli function by using the basic or
g-calculus. For this subclass of g-convex functions related to the g-Bernoulli
function, we have successfully derived the upper bounds of the Fekete-Szeg
functional and the second Hankel determinant.
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